
Type Enforcement
&

Pluggable MAC
Harvard CS252r Fa’13

1Tuesday, October 22, 13

Practical Domain and Type
Enforcement for UNIX

• Badger, et al. 1995

• Trusted Information Systems

2Tuesday, October 22, 13

Domain and
Type Enforcement

• Every Subject is associated with a Domain

• Every Object is associated with a Type

3Tuesday, October 22, 13

Boebart and Kain ’85 [7], page 23 introduces this
a given user could have multiple subjects operating in different domains
dynamically, it seems a subject and an object are associated with just one, statically: could be
anything

Domain and
Type Enforcement

• Domain Definition Table

• Domain’s Access Rights to each Type

• read, write, etc.

• Domain Interaction Table

• Domain’s Access Rights to other Domains

• signal, create, destroy, etc.

4Tuesday, October 22, 13

Domain and
Type Enforcement

• Strict Superset of Lattice-Expressible
Security Policies

5Tuesday, October 22, 13

Domain and
Type Enforcement

budget

Engineer

Manager

Accountantdesigns

salary

6Tuesday, October 22, 13

DTEL

• Encompasses Existing Security Policies

• Hierarchical Types

• Simple, Declarative Language

Domain and Type Enforcement Language

7Tuesday, October 22, 13

DTEL

Operating System E n t i t i e s

File Hierarchy P r o c e s s Hierarchy

Figure 1: Mismatch Between Policy Concepts and System Structures

trol configurations. A DTE specification includes
security attribute associations such as typelfile
associations as well as other access control in-
formation. The language provides a high-level
view of information traditionally enurnerated in
type enforcement tables and includes facilities
for superimposing security attribute bindings and
domain transitions on applications that are not
aware of DTE.

2. During system execution, DTE file security at-
tributes are maintained “implicitly” in a form
that capitalizes on intrinsic object hierarchies
(e.g., directories of files) to concisely represent se-
curity attributes. Implicit typing simplifies secu-
rity configuration establishment and removes the
need to physically store a type label with every
file. This permits DTE policies to be easily ap-
plied to existing media with full backward com-
patibility with existing disk and file system for-
mats.

3 DTE Language Support
DTE Language (DTEL) is a high-level symbolic

language for expressing reusable DTE configurations
in a human--rather than machine-friendly form.
DTEL security attributes such aa domain definitions
express fundamental constraints on subject creation
and object accesses; consequently a DTEL specifica-
tion must be eRective from an early stage in a sys-
tern’s initialization. The general scheme of DTEL is
to express information traditionally held in DDT and
DIT tables with as much simplifying structure as pos-
sible. We anticipate that some systems will require at-
tributes that are closely related; DTEL therefore s u p
ports such inherent (and simplifying) structure by pro-
viding macro facilities that allow security attributes
to be defined using shared components. To document
and clarify specifications, DTEL supports standard C
commenting conventions. Currently, DTEL provides
four primary statements for expressing a D‘I’E configu-

ration: the t y p e statement, the domain statement, the
tnitial-domain statement, and the assign statement.’
The purpose of this section is not to fully document
DTEL, but to demonstrate through a small example
that a meaningful DTEL policy can be expressed com-
pletely in a form simple and concise enough to be ad-
ministered at reasonable cost. Our metric for “reason-
able cost” is that policy administration should be no
more difficult than routine UNIX administration tasks
such as configuring remote file systems or adding user
accounts. To validate that our example policy is not
trivial, we have run it on our prototype DTE system
and found it to provide useful protection. We now in-
troduce the primary DTEL statements in the context
of a commercial policy designed to provide protection
and separation for enterprise data types and user au-
thorizations in an engineering organization

A DTEL t y p e statement declares one or more types
to be part of a DTE configuration; other DTEL state-
ments may refer only to types declared with the t y p e
statement. For example, the following type statement
declares one type for ordinary UNIX files, programs,
etc., and three types describing enterprise data:

type m i x - t , /* normal U N I X f i l e s */
specs-t, /* engineer ing specs */
budget-t , /* budget p r o j e c t i o n s */
r a t e s - t ; /* l abor r a t e s */

A DTEL domazn statement defines three compo-
nents:

entry points Programs, identified by path name,
that are bound to the domain and must be in-

’We have also formulated but not completely implemented a
IITEL mount Statement that controls mount operations, but we
restrict our attention here to implemcnted fcatures with which
we have actual experience. The mount statement would add
several lines to the example presented in this section.

68

8Tuesday, October 22, 13

DTEL

specs-t budget-.t ratest

Figure 2: Implicit Types

scenario, the login program is DTE-aware and prop-
erly authenticates and checks the authorization of each
user before starting a process in the user’s domain.

‘The fourth DTEL statement is the assign state-
ment, which is used to associate exactly one type with
every file on a system. Assign statements support “im-
plicit typing,” a technique for associating types with
files based on directory hierarchies by stating general
rules and then listing exceptions. Fi ure 2 displays
the concept. In that figure, all files \elow the root
directory, by default, have the type uniz-t. In three
subdirectories, however, uniz-t is “overridden” by the
specs-t, budget-t, and rates-t types. In each subdirec-
tory, all files by default have the type of the subdi-
rectory. Using this technique, it is easy to associate a
small number of types with a large number of files as
long as type associations tend to group according to
existing directory hierarchies. In our experience, di-
rectory hierarchies tend to organize files by purpose,
origin, sensitivity, etc., in short, the same criteria by
which type labels would often be assigned. Although
types may naturally reflect directory hierarchies, there
are clearly exceptions to this rule, and assign state-
ments can also express exceptions for individual files
as overrides to the default type associations.

,4n assign statement associates a type with a path
P and is optionally recursive; recursive statements (in-
dicated by “-r”) apply to all paths having P as a pre-
fix. For Statements having paths such that one is a
prefix of another, the statement having the longest
path P overrides statements having shorter paths for
all files reached through P . DTEL type associations
are tranquil in that the type of an object does not
change over the object’s lifetime. As a consequence,
marntenance of attribute associations at runtime may
force (automatic) rebindings of attributes to hierarchi-
cal structures. For example, when a file is renamed,
its assign statement, if any, is changed to reflect the
file’s new location. Constraints can be placed on type
assignments. DTEL provides a feature to force type
assignments to be static (indicated by “-s”) a t run-
time, which locks specification-time type assignments
for hierarchical portions of the object name space and

denies any attempt a t runtime to create objects of
other types in those areas.

One consequence of binding attributes by location
is that files that can be reached through multiple (hard
link) paths4 may appear to have multiple types. To
prevent this, DTEL will employ a tool a t specifica-
tion time that discovers whether multiple assign state-
ments name the same file. For each such file, the tool
will prompt the security administrator to decide which
among the possible types the file should have and will
then add additional assign statements to ensure that
all assign statements for the file give the same type.
Once initialized, a DTE system maintains type bind-
ings unambiguously even in the presence of multiple
links.

For example, the following assign statements pro-
vide areas for the domains and types displayed in fig-
ure 2:

ass ign -r -s unix-t /; /* d e f a u l t type */
ass ign -r -s specs-t /p ro jec ts / specs ;
ass ign -r -s budget-t /p ro jec ts /budget ;
ass ign -r -s ra tes-% / p r o j e c t d r a t a s ;

In order to allow UNIX system processes to con-
tinue to function, all system processes except login run
in a domain that gives access to the standard UNIX
objects accessible from the root directory (“/”) that
has type uniz-l; this assures compatibility for basic
system functions. The DTEL processor requires that
“/” is given a type using an assign statement. User
processes run in one of the three user-oriented domains
having appropriate access to the three subdirectories
for specs-t, budget-t, and rates-t.

The four basic DTEL statements are sufficient t o
express complete access control policies for processes,
files, and most volatile system abstractions such as

‘Symbolic links are not an issue becauae they merely name
hard link paths represented by DTEL assign statcmentr.

70

9Tuesday, October 22, 13

running example of Unix system, Engineers, Managers, and Accountants

DTEL
/* * DTEL Commercial Pol icy .
*/
type m i x - t , /* normal UNIX f i l e s , programs, e t c . */

specs- t , /* engineer ing spec i f i ca t ions */
budget -t ,
r a t e s - t ; /* l abor r a t e s */

/* budget p ro jec t ions */

#define DEF (/b in /sh) , (/b in /csh) , (rxd->unix-t) /* macro */
domain eng inee rd = DEF, (rad->specs-t);
domain p r o j e c t d = DEF, (rud->budget-t), (rd->ra tes - t) ;
domain account ingd = DEF, (rd->budget-t), (rwd->rates-t);
domain syrstemd = (/ e t c / i n i t) , (raxd->unix-t), (au to -> log ind) ;
domain l o g i n d = (/ b i d l o g i n) , (rwxd-hnix- t) , (exec->engineerxi,

p r o j e c t d ,
account ingd) ;

i n i t i a l domain sys temd; /* system s t a r t s i n t h i s domain */
ass ign -r -s
ass ign -r -s
ass ign -r -s
ass ign -r -s

m i x - t
spe c s -t
budget 4
rates-t

/;
/pro j e c t s /spe c s ;
/pro j ec t s /budget ;
/ p r o j e c t s / r a t e s ;

/* defau l t f o r a l l f i l e s */

Figure 3: Example DTEL Policy

tions, and context checking (e.g., dornains don’t refer-
ence nonexistent types, etc.). The prototype consists
of a DTE subsystem, including the DTEL compiler
and support routines for access control, and an inte-
gration of the subsystem into an OSF/1 MK 4.0 UNIX
server.6 Because DTE requires no changes to low level
formats, DTE implementations should be relatively
portable between UNIX kernels; to test this, we have
also ported the prototype to TMach Version 0.2. The
DTE modifications consist of roughly 17,000 lines of
commented C, lex, and yacc code, of which 3,600 lines
comprise the DTEL processor.

As the prototype boots, it reads its DTEL specifica-
tion, confines all processes in specified domains, asso-
ciates type labels with all files, and mediates accesses
based on these attributes. Additionally, the prototype
labels and mediates communication over UNIX pipes
and sockets. The prototype controls UNIX-domain
sockets internally and controls Internet-domain sock-
ets by typing IP datagrams, UDP datagrams, and
TCP streams. A detailed discussion [27, 231 of that
work is beyond the scope of this paper and will be sep-
arately published. We have not yet added mediation
for UNIX shared memory segments, message queues,
or semaphores; those extensions are straightforward
and will be added later.

I n addition to UNIX kernel-level modifications, we

‘The OSF/1 server is actually code from a UNIX kernel ruii-
ning on the Mach microkernel; we thereforr sometvmes refer to
this component as the “IJNIX kernel.”

have also made several applications DTE-aware. Most
significantly, we have implemented a DTE version of
the lo in program that authenticates users for specific
roles 1 8 , 20, 4, 301 and then confines user sessions to
specific environments using domain transitions autho-
rized by the DTE policy. To allow users to view and,
within DTE constraints, manipulate DTE attributes,
we have implemented DTE-aware versions of the Is,
ps, mkdir, and In programs. These programs list di-
rectory contents and process states like the standard
versions except that they also accept new arguments
to display security attributes. To analyze DTE poli-
cies prior to use in the UNIX kernel, we have linked
the DTE subsystem library into a test harness that
checks for syntactic and contextual correctness and
prints various reports. We have also implemented a
modified version of the Emacs text editor that dis-
plays type attributes of file buffers and allows users to
simultaneously view and manipulate labeled informa-
tion in multiple windows.

Figure 4 shows the general structure of the proto-
type system. An OSF/1 UNIX server runs either on a
Mach kernel or on the TMach [lo] Trusted Comput-
ing Base. UNIX processes call the UNIX system call
interface provided by the OSF/1 UNIX server. To
directly control individual UNIX processes, we have
placed DTE mechanisms in the OSF/1 UNIX server,
adding new access control constraints to some exist-
ing UNIX system calls and new system calls for DTE-
aware processes. We believe that DTE must be imple-
mented at the UNIX system call interface iri order to

72

10Tuesday, October 22, 13

-s : static, not permitted to change at run-time
-r : recursive, applies to subfiles/subdirectories
NB: use of CPP

Implementation

• Domain Definition Table and Domain
Information Table are in kernel memory

• Object-Type association in kernel memory

11Tuesday, October 22, 13

Implementation

• File creation and deletion update policy

• Policy is mirrored on disc in plaintext

• Periodic snapshot

12Tuesday, October 22, 13

unless -s enforces a static policy

Implementation

• Write to disk when users writes to disk

• Thus, nearly match UNIX performance

13Tuesday, October 22, 13

Implementation

/* * DTEL Commercial Pol icy .
*/
type m i x - t , /* normal UNIX f i l e s , programs, e t c . */

specs- t , /* engineer ing spec i f i ca t ions */
budget -t ,
r a t e s - t ; /* l abor r a t e s */

/* budget p ro jec t ions */

#define DEF (/b in /sh) , (/b in /csh) , (rxd->unix-t) /* macro */
domain eng inee rd = DEF, (rad->specs-t);
domain p r o j e c t d = DEF, (rud->budget-t), (rd->ra tes - t) ;
domain account ingd = DEF, (rd->budget-t), (rwd->rates-t);
domain syrstemd = (/ e t c / i n i t) , (raxd->unix-t), (au to -> log ind) ;
domain l o g i n d = (/ b i d l o g i n) , (rwxd-hnix- t) , (exec->engineerxi,

p r o j e c t d ,
account ingd) ;

i n i t i a l domain sys temd; /* system s t a r t s i n t h i s domain */
ass ign -r -s
ass ign -r -s
ass ign -r -s
ass ign -r -s

m i x - t
spe c s -t
budget 4
rates-t

/;
/pro j e c t s /spe c s ;
/pro j ec t s /budget ;
/ p r o j e c t s / r a t e s ;

/* defau l t f o r a l l f i l e s */

Figure 3: Example DTEL Policy

tions, and context checking (e.g., dornains don’t refer-
ence nonexistent types, etc.). The prototype consists
of a DTE subsystem, including the DTEL compiler
and support routines for access control, and an inte-
gration of the subsystem into an OSF/1 MK 4.0 UNIX
server.6 Because DTE requires no changes to low level
formats, DTE implementations should be relatively
portable between UNIX kernels; to test this, we have
also ported the prototype to TMach Version 0.2. The
DTE modifications consist of roughly 17,000 lines of
commented C, lex, and yacc code, of which 3,600 lines
comprise the DTEL processor.

As the prototype boots, it reads its DTEL specifica-
tion, confines all processes in specified domains, asso-
ciates type labels with all files, and mediates accesses
based on these attributes. Additionally, the prototype
labels and mediates communication over UNIX pipes
and sockets. The prototype controls UNIX-domain
sockets internally and controls Internet-domain sock-
ets by typing IP datagrams, UDP datagrams, and
TCP streams. A detailed discussion [27, 231 of that
work is beyond the scope of this paper and will be sep-
arately published. We have not yet added mediation
for UNIX shared memory segments, message queues,
or semaphores; those extensions are straightforward
and will be added later.

I n addition to UNIX kernel-level modifications, we

‘The OSF/1 server is actually code from a UNIX kernel ruii-
ning on the Mach microkernel; we thereforr sometvmes refer to
this component as the “IJNIX kernel.”

have also made several applications DTE-aware. Most
significantly, we have implemented a DTE version of
the lo in program that authenticates users for specific
roles 1 8 , 20, 4, 301 and then confines user sessions to
specific environments using domain transitions autho-
rized by the DTE policy. To allow users to view and,
within DTE constraints, manipulate DTE attributes,
we have implemented DTE-aware versions of the Is,
ps, mkdir, and In programs. These programs list di-
rectory contents and process states like the standard
versions except that they also accept new arguments
to display security attributes. To analyze DTE poli-
cies prior to use in the UNIX kernel, we have linked
the DTE subsystem library into a test harness that
checks for syntactic and contextual correctness and
prints various reports. We have also implemented a
modified version of the Emacs text editor that dis-
plays type attributes of file buffers and allows users to
simultaneously view and manipulate labeled informa-
tion in multiple windows.

Figure 4 shows the general structure of the proto-
type system. An OSF/1 UNIX server runs either on a
Mach kernel or on the TMach [lo] Trusted Comput-
ing Base. UNIX processes call the UNIX system call
interface provided by the OSF/1 UNIX server. To
directly control individual UNIX processes, we have
placed DTE mechanisms in the OSF/1 UNIX server,
adding new access control constraints to some exist-
ing UNIX system calls and new system calls for DTE-
aware processes. We believe that DTE must be imple-
mented at the UNIX system call interface iri order to

72

14Tuesday, October 22, 13

Implementation

/* * DTEL Commercial Pol icy .
*/
type m i x - t , /* normal UNIX f i l e s , programs, e t c . */

specs- t , /* engineer ing spec i f i ca t ions */
budget -t ,
r a t e s - t ; /* l abor r a t e s */

/* budget p ro jec t ions */

#define DEF (/b in /sh) , (/b in /csh) , (rxd->unix-t) /* macro */
domain eng inee rd = DEF, (rad->specs-t);
domain p r o j e c t d = DEF, (rud->budget-t), (rd->ra tes - t) ;
domain account ingd = DEF, (rd->budget-t), (rwd->rates-t);
domain syrstemd = (/ e t c / i n i t) , (raxd->unix-t), (au to -> log ind) ;
domain l o g i n d = (/ b i d l o g i n) , (rwxd-hnix- t) , (exec->engineerxi,

p r o j e c t d ,
account ingd) ;

i n i t i a l domain sys temd; /* system s t a r t s i n t h i s domain */
ass ign -r -s
ass ign -r -s
ass ign -r -s
ass ign -r -s

m i x - t
spe c s -t
budget 4
rates-t

/;
/pro j e c t s /spe c s ;
/pro j ec t s /budget ;
/ p r o j e c t s / r a t e s ;

/* defau l t f o r a l l f i l e s */

Figure 3: Example DTEL Policy

tions, and context checking (e.g., dornains don’t refer-
ence nonexistent types, etc.). The prototype consists
of a DTE subsystem, including the DTEL compiler
and support routines for access control, and an inte-
gration of the subsystem into an OSF/1 MK 4.0 UNIX
server.6 Because DTE requires no changes to low level
formats, DTE implementations should be relatively
portable between UNIX kernels; to test this, we have
also ported the prototype to TMach Version 0.2. The
DTE modifications consist of roughly 17,000 lines of
commented C, lex, and yacc code, of which 3,600 lines
comprise the DTEL processor.

As the prototype boots, it reads its DTEL specifica-
tion, confines all processes in specified domains, asso-
ciates type labels with all files, and mediates accesses
based on these attributes. Additionally, the prototype
labels and mediates communication over UNIX pipes
and sockets. The prototype controls UNIX-domain
sockets internally and controls Internet-domain sock-
ets by typing IP datagrams, UDP datagrams, and
TCP streams. A detailed discussion [27, 231 of that
work is beyond the scope of this paper and will be sep-
arately published. We have not yet added mediation
for UNIX shared memory segments, message queues,
or semaphores; those extensions are straightforward
and will be added later.

I n addition to UNIX kernel-level modifications, we

‘The OSF/1 server is actually code from a UNIX kernel ruii-
ning on the Mach microkernel; we thereforr sometvmes refer to
this component as the “IJNIX kernel.”

have also made several applications DTE-aware. Most
significantly, we have implemented a DTE version of
the lo in program that authenticates users for specific
roles 1 8 , 20, 4, 301 and then confines user sessions to
specific environments using domain transitions autho-
rized by the DTE policy. To allow users to view and,
within DTE constraints, manipulate DTE attributes,
we have implemented DTE-aware versions of the Is,
ps, mkdir, and In programs. These programs list di-
rectory contents and process states like the standard
versions except that they also accept new arguments
to display security attributes. To analyze DTE poli-
cies prior to use in the UNIX kernel, we have linked
the DTE subsystem library into a test harness that
checks for syntactic and contextual correctness and
prints various reports. We have also implemented a
modified version of the Emacs text editor that dis-
plays type attributes of file buffers and allows users to
simultaneously view and manipulate labeled informa-
tion in multiple windows.

Figure 4 shows the general structure of the proto-
type system. An OSF/1 UNIX server runs either on a
Mach kernel or on the TMach [lo] Trusted Comput-
ing Base. UNIX processes call the UNIX system call
interface provided by the OSF/1 UNIX server. To
directly control individual UNIX processes, we have
placed DTE mechanisms in the OSF/1 UNIX server,
adding new access control constraints to some exist-
ing UNIX system calls and new system calls for DTE-
aware processes. We believe that DTE must be imple-
mented at the UNIX system call interface iri order to

72

15Tuesday, October 22, 13

 - implemented a login program for UNIX
 - reimplemented basic UNIX commands to be domain and type enforcement aware
 - wrote a “contextual” correctness tester which prints “various reports”
 - of course ... an Emacs mode

Design and Implementation
of the TrustedBSD MAC

Framework

• Watson, et al. 2003

• Network Associates Laboratories

16Tuesday, October 22, 13

• Network Associates Laboratories

Spiritual Successor to
Previous Paper’s Lab

17Tuesday, October 22, 13

• Dynamic Security Extensions

• Policy-Agnostic Object Labeling Services

Design and Implementation
of the TrustedBSD MAC

Framework

18Tuesday, October 22, 13

Previous Work

• Direct Kernel Modification

• Duplicated Source Trees

19Tuesday, October 22, 13

 - kernel modification is hard
 - tracking changes to kernel is hard
 - no confidence that other parts of kernel are secure

Previous Work

• Race Conditions

• Lock Order Problems

20Tuesday, October 22, 13

 - classic setuid problem, kernel checks if file is OK, in between checking and execution,
malicious thread swaps in a malicious executable
 - coordinating security system locks with base kernel system locks is hard, must release
locks on files in order to allow subsytem to load things, this creates a race with malicious
threads

Previous Work

• Non-Compositional

21Tuesday, October 22, 13

 - source code conflicts
 - functionality conflicts

Previous Work

• rolling your own kernel patches is hard

22Tuesday, October 22, 13

Kernel Framework
Approach

• Provide a MAC interface to kernel services

• Provide a MAC interface to security policies

23Tuesday, October 22, 13

 - allow policies to main labels on kernel objects
 - allow policies to select subsets of interfaces relevant to themselves

Kernel Framework
Approach

• Access Control Entry Points

• file system

• IPC

• network stack

• etc.

• Interested policies may reject an action

24Tuesday, October 22, 13

Implemented Policies

• Biba: Hierarchical Fixed-Label Integrity

• BSDExtended: “file system firewall”

• ifoff: interface silencing

• MLS: Multi-Level Security w/ compartments

• sebsd: port of SELinux/FLASK/TE

25Tuesday, October 22, 13

User Applications

• Need not be aware of any non-UNIX
access control

• Awareness enables appropriate policy
manipulation and reading

26Tuesday, October 22, 13

Future Work

• Dynamic OS policy change in response to
hostile environment

27Tuesday, October 22, 13

Further Discussion

• Capabilities in the context of DTE

• Role Based Access Control and Domains

• LSM vs TrustedBSD

• What is the relationship to SELinux?

• Is KeyKOS implementable as a TrustedBSD policy?

28Tuesday, October 22, 13

Capabilities and DTE

• Domains may execute programs in other domains

• Domains may have capabilities to other domains

• Combine a domain capability with a program
capability to run a program?

• One capability to multiple different objects?

29Tuesday, October 22, 13

RBAC and DTE

• Subjects may be spawned in various domains

• During execution subject has exactly one domain

• A domain U with execution access to a set of
domains R is a user permitted perform roles in R

• Roles are associated with a set of programs which
may be run in that role

• Role inheritance?

30Tuesday, October 22, 13

• LSM doesn’t have compositionally (?)

• LSM only permits one policy to store labels

• SELinux is an LSM module

LSM vs TrustedBSD

31Tuesday, October 22, 13

LSM vs TrustedBSD

3.8 Related work

As described in Chapter 1, the area of operating system access control has been exten-

sively explored by research and commercial project. Research initially focused on pos-

sible access control policies, developing models such as Bell and LaPadula’s BLP/MLS

confidentiality [15], Biba’s integrity policy [18], Boebert’s (or possibly Neumann’s) Type

Enforcement [22, 96], and Badger’s Domain and Type Enforcement [13]. Unsatisfyingly,

no single policy model has proven simple, flexible, and useful for all configurations.

This in turn has led to the popularity of more flexible models (such as TE), but also

research into extensible access control models increasingly based around Anderson’s

reference monitor [5]. Systems such as Ott’s Rule-Set Based Access Control (RSBAC)

for Linux [99], based on Abrams Generalized Framework for Access Control GFAC) [2],

and FLASK [78] both explore this area. Similarly, system call interposition systems

have attempted to fill this gap, including Badger’s Generic Software Wrappers [46].

More recently, the MAC Framework and Linux Security Modules [148] have inves-

tigated this space to great e↵ect: by providing a reference monitor that has a close

integration with kernel data structures, problems with system call interposition can

be avoided while still supporting higher level abstractions such as BLP, Biba, and TE

(most commonly via FLASK). Unlike LSM, the MAC Framework place a strong fo-

cus on supporting infrastructure (such as labelling semantics and policy-agnostic label

system calls) and the kernel synchronisation model, o↵ering stronger guarantees for

policy authors. Apple’s Kernel Authorization framework (kauth) also provides kernel

extensibility with the intention of supporting anti-virus systems, and has been adopted

by NetBSD [9, 35], but has proven insu�ciently expressive to support mandatory pro-

tection schemes, leading Apple to also adopt the TrustedBSD MAC Framework in their

Mac OS X and iOS operating systems.

3.9 Conclusion

This chapter introduced the TrustedBSD MAC Framework, an access control extension

framework for the commodity FreeBSD operating system. Premised on OS vendor sup-

port for access control extensibility, the goal of the framework is to improve assurance

through use of a reference monitor design, reduce the cost of access control localisa-

tion, improve OS vendor support for third-party security products such as anti-virus

packages, and facilitate access control research and technology transfer. To validate

the framework, we implemented a variety of access control policies, ranging from tradi-

tional MAC models such as Biba and MLS, to the research LOMAC policy, to hardening

models designed around UNIX credentials and file ownership. The MAC Framework

incorporates a set of guiding design principles intended to address both critical concerns

with prior work and obstacles to adoption:

• Vendor lock-in to a specific access control policy is avoided while improving the

89

Watson, Robert N. M. New approaches to operating system security
extensibility. University of Cambridge Technical Report. April 2012

32Tuesday, October 22, 13

SELinux

• Implemented as a Linux Security Module

• Implemented by the NSA and others

• Grew from the FLASK project around 2001

• Integrated into linux 2.6 September 2003

33Tuesday, October 22, 13

The Security-enhanced Linux prototype was developed by NSA in conjunction with research
partners from NAI Labs, Secure Computing Corporation (SCC), and the MITRE Corporation.
Since the initial public release, many other contributions have followed.

https://lkml.org/lkml/2003/7/14/286
https://lkml.org/lkml/2003/7/14/286

KeyKOS in TrustedBSD

• KeyKOS domains “obey” programs

• Domains hold keys

• Keys are capabilities

• Gate keys allow domain-domain comms

• Meter keys

34Tuesday, October 22, 13

KeyKOS in TrustedBSD

• MAC_PERFORM (respond to events with
side effects)

• MAC_CHECK (authorize/deny with error
message)

35Tuesday, October 22, 13

MAC_BOOLEAN use for “special case scenarios wher epolicies augment an existing kernel
service decision rather than returning an access control result”.

KeyKOS in TrustedBSD

• TrustedBSD does not permit modifying
results of system calls

• Disable all file system calls

• Provide alternative API

36Tuesday, October 22, 13

