Type Enforcement

&
Pluggable MAC

Harvard CS252r Fa’l 3




Practical Domain and lype
Enforcement for UNIX

® Badger, et al. 1995

® Trusted Information Systems




Domain and
Type Enforcement

® Every Subject is associated with a Domain

® Every Object is associated with a Type

Tuesday, October 22, 13 3

Boebart and Kain ’85 [7], page 23 introduces this

a given user could have multiple subjects operating in different domains

dynamically, it seems a subject and an object are associated with just one, statically: could be
anything



Domain and
Type Enforcement

® Domain Definition Table
® Domain’s Access Rights to each Type
® read, write, etc.

® Domain Interaction Table

® Domain’s Access Rights to other Domains

® signal, create, destroy, etc.

Tuesday, October 22, 13



Domain and
Type Enforcement

® Strict Superset of Lattice-Expressible
Security Policies




Domain and
Type Enforcement

Manager wdget

designs Accountant

v /
salary

Engineer




DTEL

D Type E L

® Encompasses Existing Security Policies
® Hierarchical Types

® Simple, Declarative Language

Tuesday, October 22, 13



Policy Tables

/

DTEL

Operating System Entities

Regquired
Napping

NFS Subhierarshy

File Hierarchy Process Hierarchy

Figure 1: Mismatch Between Policy Concepts and System Structures

Tuesday, October 22, 13




DTEL

specs_t budget__ rates_t

Figure 2: Implicit Types

Tuesday, October 22, 13
running example of Unix system, Engineers, Managers, and Accountants



DTEL

/%

* DTEL Commercial Policy.

*/

type unix_t, /* normal UNIX files, programs, etc. */
specs._t, /* engineering specifications */
budget _t, /* budget projections */
rates_t; /* labor rates */

#define DEF (/bin/sh), (/bin/csh), (rxd->unix.t) /* macro */

domain engineer. d
domain project.d
domain accounting.d
domain system.d
domain login.d

DEF, (rwd->specst);

DEF, (rwd->budget.t), (rd->rates.t);

DEF, (rd->budget.t), (rwd->rates_t);

(/etc/init), (rwxd->unixt), (auto->logind);
(/bin/login), (rwxd->unixt), (exec->engineerd,

o # i

project. d,
accounting . d);
initial domain system.d; /* system starts in this domain */
assign -r -s unix_t /; /* default for all files */
assign -r —S specs_t /projects/specs;
assign -r -s budget .t /projects/budget;
assign -r -s rates_t /projects/rates;

Figure 3: Example DTEL Policy

Tuesday, October 22, 13

-s : static, not permitted to change at run-time
-r : recursive, applies to subfiles/subdirectories
NB: use of CPP



Implementation

® Domain Definition Table and Domain
Information Table are in kernel memory

® Object-Type association in kernel memory

Tuesday, October 22, 13



Implementation

® File creation and deletion update policy
® Policy is mirrored on disc in plaintext

® Periodic snapshot

Tuesday, October 22, 13
unless -s enforces a static policy

12



Implementation

® Write to disk when users writes to disk

® Thus, nearly match UNIX performance

Tuesday, October 22, 13



Implementation

also ported the prototype to TMach Version 0.2. The {
DTE modifications consist of roughly 17,000 lines of
commented C, lex, and yacc code, of which 3, 600 lines
comprise the D'TEL processor.

R —

Tuesday, October 22, 13

14



Implementation

have also made several applications DTE-aware. Most
significantly, we have implemented a DTE version of
the login program that authenticates users for specific
roles [818 20, 4, 30] and then confines user sessions to
specific environments using domain transitions autho-
rlzed by the DTE policy. To allow users to view and,
within DTE constraints, manipulate DTE attributes,
we have implemented DTE-aware versions of the Is,
ps, mkdir, and In programs. These programs list di-
rectory contents and process states like the standard
versions except that they also accept new arguments
to display security attributes. To analyze DTE poli-
cies prior to use in the UNIX kernel, we have linked
the DTE subsystem library into a test harness that
checks for syntactic and contextual correctness and
prints various reports. We have also implemented a
modified version of the Emacs text editor that dis-
plays type attributes of file buffers and allows users to
simultaneously view and manipulate labeled informa-
tion in multiple windows.

Tuesday, October 22, 13

— implemented a login program for UNIX

- reimplemented basic UNIX commands to be domain and type enforcement aware
- wrote a “contextual” correctness tester which prints “various reports”

- of course ... an Emacs mode



Design and Implementation
of the TrustedBSD MAC
Framework

® \Watson, et al. 2003

® Network Associates Laboratories




® Network Associates Laboratories

Spiritual Successor to
Previous Paper’s Lab

Tuesday, October 22, 13

17



Design and Implementation
of the TrustedBSD MAC
Framework

® Dynamic Security Extensions

® Policy-Agnostic Object Labeling Services




Previous VWork

® Direct Kernel Modification

® Duplicated Source Trees

Tuesday, October 22, 13
- kernel modification is hard
- tracking changes to kernel is hard
- no confidence that other parts of kernel are secure

19



Previous VWork

® Race Conditions

® |ock Order Problems

Tuesday, October 22, 13

- classic setuid problem, kernel checks if file is OK, in between checking and execution,
malicious thread swaps in a malicious executable

- coordinating security system locks with base kernel system locks is hard, must release
locks on files in order to allow subsytem to load things, this creates a race with malicious
threads

20



Previous VWork

® Non-Compositional

Tuesday, October 22, 13

- source code conflicts
- functionality conflicts

21



Previous VWork

® rolling your own kernel patches is hard

Tuesday, October 22, 13



Kernel Framework
Approach

® Provide a MAC interface to kernel services

® Provide a MAC interface to security policies

Tuesday, October 22, 13

— allow policies to main labels on kernel objects
- allow policies to select subsets of interfaces relevant to themselves

23



Kernel Framework
Approach

® Access Control Entry Points
® file system
o |PC
® network stack
® etc.

® |nterested policies may reject an action

Tuesday, October 22, 13



Implemented Policies

Biba: Hierarchical Fixed-Label Integrity
BSDExtended: “file system firewall”
ifoff: interface silencing

MLS: Multi-Level Security w/ compartments

sebsd: port of SELinux/FLASK/TE




User Applications

® Need not be aware of any non-UNIX
access control

® Awareness enables appropriate policy
manipulation and reading

Tuesday, October 22, 13



Future Work

® Dynamic OS policy change in response to
hostile environment

Tuesday, October 22, 13



Further Discussion

Capabilities in the context of DTE

Role Based Access Control and Domains

LSM vs TrustedBSD
What is the relationship to SELinux?

Is KeyKOS implementable as a TrustedBSD policy?

Tuesday, October 22, 13

28



Capabilities and DTE

Domains may execute programs in other domains

Domains may have capabilities to other domains

Combine a domain capability with a program
capability to run a program?

One capability to multiple different objects!?

Tuesday, October 22, 13

29



RBAC and DTE

Subjects may be spawned in various domains
During execution subject has exactly one domain

A domain U with execution access to a set of
domains R is a user permitted perform roles in R

Roles are associated with a set of programs which
may be run in that role

Role inheritance?

Tuesday, October 22, 13

30



LSM vs TrustedBSD

® | SM doesn’t have compositionally (?)
® | SM only permits one policy to store labels

® SELinux is an LSM module

Tuesday, October 22, 13



LSM vs TrustedBSD

(most commonly via FLASK). Unlike LSM, the MAC Framework place a strong fo-
cus on supporting infrastructure (such as labelling semantics and policy-agnostic label
system calls) and the kernel synchronisation model, offering stronger guarantees for
policy authors. Apple’s Kernel Authorization framework (kauth) also provides kernel
extensibility with the intention of supporting anti-virus systems, and has been adopted
by NetBSD [9, 35], but has proven insufficiently expressive to support mandatory pro-
tection schemes, leading Apple to also adopt the TrustedBSD MAC Framework in their
Mac OS X and iOS operating systems.

R —

Watson, Robert N. M. New approaches to operating system security
extensibility. University of Cambridge Technical Report. April 2012

Tuesday, October 22, 13

32



SELinux

® |Implemented as a Linux Security Module
® |Implemented by the NSA and others
® Grew from the FLASK project around 2001

® |ntegrated into linux 2.6 September 2003

Tuesday, October 22, 13 33

The Security-enhanced Linux prototype was developed by NSA in conjunction with research
partners from NAI Labs, Secure Computing Corporation (SCC), and the MITRE Corporation.
Since the initial public release, many other contributions have followed.

https://lkml.org/lkml/2003/7/14/286
https://lIkml.org/lkml/2003/7/14/286




KeyKOS in TrustedBSD

® KeyKOS domains “obey” programs

® Domains hold keys

® Keys are capabilities

® Gate keys allow domain-domain comms

® Meter keys

Tuesday, October 22, 13



KeyKOS in TrustedBSD

® MAC PERFORM (respond to events with
side effects)

¢ MAC CHECK (authorize/deny with error
message)

Tuesday, October 22, 13 35

MAC_BOOLEAN use for “special case scenarios wher epolicies augment an existing kernel
service decision rather than returning an access control result”.



KeyKOS in TrustedBSD

® TrustedBSD does not permit modifying
results of system calls

® Disable all file system calls

® Provide alternative API

Tuesday, October 22, 13



