
PhatRaid, yo

Andrew Johnson Daniel King Lucas Waye
Scott Moore

May 13, 2014

Distributed file stores, like Google’s Chubby [1] and CS260r’s Phat [3], send
all files through a single master node which consistently replicates the file on
many slaves. In this scheme, the master node’s throughput is a bottleneck for
storing large files. We present PhatRaid which mitigates this bottleneck by
partitioning files across many Paxos groups which form a RAID [5] group.

1 Introduction

Google’s Chubby [1] is a distributed file system which achieves consensus in
the face of limited failures. Unfortunately, for storing large files disk latency
on the cluster nodes is a bottleneck. We propose building a RAID (Redundant
Array of Inexpensive Disks) [5] group out of distributed file system clusters.
Large files are sharded and disk latency is reduced proportional to number
of clusters. Failure resiliency is not completely sacrificed and we provide an
analysis of the new failure modes.

Our setting is in a data center where we have low network latency, high net-
work throughput, and the need to dependably store large files with tolerance
to some CPU, network, and disk failure. In this setting, we hypothesize that
the major bottleneck for replicated file storage is disk read/write latency. We
combat this bottleneck with ideas from RAID, which allow for faster file ac-
cess, and ideas from distributed consensus algorithms, which allow for con-
sistent replication.

1.1 Disk Performance

An important consideration in our project is the impact disk performance has
on overall commit latency. We believe that disk read/write latency is the major
contributor to storing large files in a distributed system.

In a review of hard disk performance [2], Hard Disk Drives (HDD) were com-
pared with Solid State Drives (SSD). HDDs use a physical magnetic platter
that spins so that a drive head can read or write data by sensing or manip-
ulating the magnetic field in a particular position on the platter. In contrast,

1

Figure 1: Left Chart: Solid State Disk reads across entire drive (Left – Outer-
most sector, Right – Innermost sector), Right Chart: Hard Disk reads across
the entire drive (Left – Outer rim, Right – Inner rim). From [2]

SSDs have no moving parts and instead uses integrated circuits as memory to
store data persistently. Because the way in which data is accessed is different,
the performance characteristics between the two are different.

Figure 1 shows a comparison between read times for a SSD and HDD as a
function of position on the disk. HDD storage performance is greatly influ-
enced by where on the disk platter the data was placed. Data can be placed
on the outer rim of the platter much more quickly than data placed near the
center of the platter as the outer rim is moving faster in comparison (due
to conservation of angular momentum). In contrast to HDDs, SSDs do not
exhibit this problem as there is no spinning platter. The left diagram in Fig-
ure 1 shows relatively constant read performance throughout the entire disk.
Additionally, HDDs have difficultly with random accesses as the drive may
need to wait for the drive head to be directly over the correct position on the
platter. This problem becomes especially apparent when an individual file
is fragmented into multiple blocks by the file system. SSDs have better ran-
dom access times, in general, than HDDs. Sequential access tends to be many
times faster than random access for both SSDs and HDDs [2]. HDD perfor-
mance can also can suffer from spin-up delay, which happens as a result of a
power-saving measure that stops spinning the disk during idle times.

We decided that HDDs have far too much performance variability in order
to be properly modeled. As a result, we instead chose to simulate the per-
formance characteristics of SSDs as they have relatively constant access times
regardless of sector position on the drive and also do not suffer from spin-up
delay. Also, because HDDs are slower, and our hypothesis supposes that disk
is the bottleneck, this should be a more challenging case for PhatRaid.

Figure 2 shows the performance for SSDs from a 2013 survey of commer-

2

Solid State Disk Performance Benchmarks
Sequential Write Speed 55.03 - 481.85 MB/sec
Write Access Time 0.03 - 0.32 ms
Sequential Read Speed 207.95 - 522.45 MB/sec
Read Access Time 0.03 - 0.22 ms

Figure 2: Solid State Disk performance for middle 95% of solid state
drives tested in a benchmark. Benchmark available at Benchmark available
at http://www.tomshardware.com/charts/ssd-charts-2013/benchmarks%
2C129.html.

cially available SSDs. Sequential write speeds measure the throughput (in
megabytes per second) of data stored on the drive when the data is being
written in the drive’s natural sequential order (e.g. increasing sectors). Sim-
ilarly, sequential read speed measures the throughput for sequential reads.
Read/Write access times represent the latency of performing a single random
read or write.

2 Implementation

2.1 Erlang Primer

PhatRaid is implemented in Erlang. Erlang is a pure, functional language
with extensive library support for distributed applications. Erlang has one
unit of concurrency, the process, and one unit of distribution, the node. Each
Erlang node consists of an arbitrary number of processes. Erlang nodes may
live on the same machine or on different machines connected by a network.
Every Erlang node is given a name by an Erlang name server. Erlang processes
may communicate with any Erlang node or process it can name. Erlang pro-
cesses interact with one another by making RPC calls or sending messages.
Identifiers beginning with a lowercase letter are actually atoms, a literal con-
stant similar to Scheme and Lisp’s symbols. Identifiers beginning with an
uppercase letter are normal identifiers.

2.2 System Organization

PhatRaid is implemented in Erlang, reusing our previous implementation of
Phat. The implementation is divided into three domains: the server cluster,
the client, and the raid-client. The server code implements a variant of the
Viewstamped Replication (VR) [4] consensus algorithm as well a file system.

3

Raid Client

Client 1

Client 2

Client 3

Replica Master Replica

Replica Master Replica

Replica Master Replica

Client Node

Phat Cluster #1

Phat Cluster #2

Phat Cluster #3

Figure 3: A PhatRaid(3,1) Group

The client code exposes a file system API which hides the communication
bookkeeping. The raid-client provides a file system API which transparently
partitions files and reassembles them as they are sent and received from the
server cluster.

Figure 3 depicts the organization of our system. The raid-client delegates
communication to each client. Each client is connected to one Phat cluster,
which has a master and a number of replicas.

The master and each replica in a Phat cluster maintains a separate file system.
Two different phat clusters do not communicate directly. The raid-client and
client processes all live on one Erlang node. Each Phat master and Phat

replica lives on its own Erlang node along with its file system.

2.3 Disk Emulation and Abstraction Layer

We developed a novel “Disk Emulation and Abstraction Layer” (DEAL) to
simulate SSD performance for our evaluation. The DEAL simulates read and
write delay using the information from Figure 2. We calculate disk delay as:

ReadDelay(x) = x/SeqReadSpeed + ReadAccessTime (1)

WriteDelay(x) = x/SeqWriteSpeed + WriteAccessTime (2)

4

where x is the size of the file. During filesystem operations, these formulas
are used to put the process to sleep in proportion to the size of the file being
written to or read from the drive.

Instead of sending very large files, we sent smaller strings that were treated by
the DEAL as being much larger (e.g. 1 character represented 1MB of data). As
a result, we extended the DEAL to perform an additional delay for performing
bitwise XOR on a file as that was the only other operation on a file for our
tests. In our model, drive delays were much greater than XOR delays (e.g. 20

GB/second XOR throughput versus 200 MB/second drive throughput).

2.4 RAIDing Phat

A PhatRaid(C, f) implementation is parameterized by two numbers: C, the
number of Phat clusters, and f , the Phat cluster failure tolerance. A single
Phat cluster contains 2 f + 1 nodes. A PhatRaid group contains C clusters
for a total of C(2 f + 1) Phat nodes. A PhatRaid group can be concurrently
accessed by an arbitrary number of raid-clients.

On a raid-client node, C client processes are spawned each of which maintains
a connection to one of the C Phat clusters. Each client process mediates
communication between its assigned Phat cluster and the raid-client.

A store operation on the raid-client breaks the file into C − 1 chunks, stores
each chunk on a cluster, and stores a parity bit on the remaining cluster. A
raid-client fetch operation reconstructs the file from the C − 1 chunks, using
the parity bit if necessary.

2.5 Phat Clusters

A server cluster is a collection of nodes which maintain a distributed file
system. Each server cluster designates a unique master node (aka the Phat

Master). The other nodes are known as Phat replicas or just replicas.

The master and each replica have four components: the supervisor, the server,
VR, and the file system:

• the supervisor – restarts the other three processes if any dies

• the server – passes messages to the VR process if this node is the Phat

master; otherwise, it drops the message and informs the client of the
current master node

• VR – maintains a log of opaque messages, achieving consensus with
other nodes in the cluster via the Viewstamped Replication protocol

5

• the file system – maintains a hierarchical file system with locks

2.6 Erlang Behaviors

The four components are implemented using Erlang behaviors. An Erlang
behavior is a framework which implements common patterns like servers and
finite-state machines. In particular, the supervisor uses the supervisor be-
havior, the server and file system both use the gen_server behavior, and VR
uses the gen_fsm behavior.

• The supervisor behavior provides a framework for restarting failed pro-
cesses.

• The gen_server behavior provides a framework for many-client single-
server interactions. We implemented functions to process messages for-
matted as Erlang tuples. The gen_server behavior handles low-level
socket interaction, messaging queueing, etc.

• The gen_fsm (finite-state machine) behavior generalizes the gen_server
behavior by permitting the server to have a finite number of states. Each
state has a set of functions with which to process messages. This be-
havior can be seen as an ad hoc polymorphic variant of the gen_server
behavior.

Additionally, the gen_server and gen_fsm behaviors allow the programmer
to specify an arbitrary state value which will be passed around à la functional
reactive programming. We call this state value the store.

2.6.1 The supervisor Behavior

Listing 1 is taken from our supervisor code. When a supervisor is started,
the supervisor behavior looks for a procedure called init . The init procedure
returns a child specification, which is a pair of a restart specification and a
list of children. In Listing 1, the restart specification, {one_for_all ,1,5 } specifies
that if any one node dies, all nodes should be restarted, unless more than one
failure has occurred in the past five seconds. If more than one failure occurs
in five seconds, the supervisor kills all its children and then shuts itself down.

Each child in the list of children is a 6-tuple consisting of: child name, initial
procedure call, child transience, shutdown style, child type, and necessary
modules.

• The initial procedure call is a 3-tuple of module, procedure name and
argument list.

6

6 i n i t ([Master|Rest]) −>
7 Node = node () ,
8 VRS = l i s t s : map(fun (N) −> { vr ,N} end , [Master|Rest]) ,
9 { ok , { { o n e _ f o r _ a l l , 1 , 5 } ,

10 [{ f s
11 , { f s , s t a r t _ l i n k , [] }
12 , permanent , 1 , worker , [f s] }
13 , { ps
14 , { server , s t a r t _ l i n k , [] }
15 , permanent , 1 , worker , [server] }
16 , { vr
17 , { vr , startNode , [{ vr , Node} , VRS , fun server : commit/3] }
18 , permanent , 1 , worker , [vr] }] } } .

Listing 1: The supervisor Behavior — phat.erl

• Every child’s transience is specified as permanent, meaning they should be
restarted.

• Every child has shutdown style 1 meaning they will first be asked to
terminate and one second later they will be forcibly terminated1.

• All of our children are workers, which are distinguished from sub-
supervisors.

• The necessary modules are dynamically loaded when the child processes
is initialized. In PhatRaid, each child only depends on one module.

2.6.2 The gen_fsm Behavior

A state in the gen_fsm behavior manifests as a procedure which accepts two
arguments: the incoming message and the store. The return value of a state-
procedure is usually the 4-tuple {next_state ,NextState,NewStore,Timeout}. The gen_fsm
behavior will transition to NextState and set the store to NewStore. When a new
message is received the gen_fsm behavior will invoke the NextState procedure
with the new message and the NewStore.

The Phat file system reaches consensus via the Viewstamped Replication pro-
tocol [4]. Listing 2 defines how to handle prepare messages sent to a node in
the replica state. It is piecewise defined by pattern matching on the arguments.
The first two definition clauses use the when keyword to specify arbitrary re-
quired relationships between the matched variables.2

1We could also have specified the hastier shutdown style: brutal_kill
2?debugFmt is a macro for printing debug messages when a flag is set

7

176 r e p l i c a ({ prepare , MasterViewNumber , _ , _ , _ , _ , _ }
177 , S t a t e = # { viewNumber := ViewNumber })
178 when MasterViewNumber > ViewNumber −>
179 ?debugFmt ("my view i s out of date , need to recover~n" , []) ,
180 s tar tRecovery (S t a t e) ;
181

182 r e p l i c a ({ prepare , MasterViewNumber , _ , _ , _ , _ , _ }
183 , S t a t e = # { timeout := Timeout , viewNumber := ViewNumber })
184 when MasterViewNumber < ViewNumber −>
185 ?debugFmt (" ignoring prepare from old view~n" , []) ,
186 { n e x t _ s t a t e , r e p l i c a , S ta te , Timeout } ;
187

188 r e p l i c a ({ prepare , _ , Op, OpNumber
189 , MasterCommitNumber , Cl ient , RequestNum }
190 , S t a t e = # { prepareBuffer := PrepareBuffer }) −>
191 Message = {OpNumber, Op, Cl ient , RequestNum } ,
192 NewPrepareBuffer = l i s t s : s o r t ([Message|PrepareBuffer]) ,
193 processPrepareOrCommit (OpNumber
194 , MasterCommitNumber
195 , NewPrepareBuffer
196 , S t a t e
197) ;

Listing 2: The gen_fsm Behavior — vr.erl

375 processPrepareOrCommit (OpNumber, MasterCommitNumber , NewPrepareBuffer
376 , S t a t e = # { timeout := Timeout
377 , commitNumber := CommitNumber
378 , masterNode := MasterNode
379 , myNode := MyNode
380 , viewNumber := ViewNumber
381 , allNodes := Nodes })
382 when CommitNumber > MasterCommitNumber −>
383 NewViewNumber = ViewNumber + 1 ,
384 NewMaster = chooseMaster (S ta te , NewViewNumber) ,
385 sendToReplicas (MasterNode
386 , Nodes
387 , { startViewChange , NewViewNumber , MyNode}
388) ,
389 { n e x t _ s t a t e
390 , viewChange
391 , S t a t e # { viewNumber := NewViewNumbern
392 , masterNode := NewMaster }
393 , Timeout
394 } ;

Listing 3: Processing the VR Message Queue, Part 1 — vr.erl

8

397 processPrepareOrCommit (OpNumber, MasterCommitNumber , NewPrepareBuffer
398 , # { timeout := Timeout } = S t a t e) −>
399 A f t e r B u f f e r =
400 processBuf fer (S t a t e # { prepareBuffer := NewPrepareBuffer }
401 , NewPrepareBuffer
402 , MasterCommitNumber
403) ,
404 AfterLog = processLog (AfterBuf fer , MasterCommitNumber) ,
405 # { masterNode := MasterNode
406 , viewNumber := ViewNumber
407 , commitNumber := CommitNumber
408 , myNode := MyNode } = AfterLog ,
409 i f
410 CommitNumber < MasterCommitNumber −>
411 s tar tRecovery (S t a t e) ;
412 t rue −>
413 sendToMaster (MasterNode
414 , { prepareOk , ViewNumber , OpNumber, MyNode}
415) ,
416 { n e x t _ s t a t e , r e p l i c a , AfterLog , Timeout }
417 end .

Listing 4: Processing the VR Message Queue, Part 2 — vr.erl

The final definition clause triggers when the replica receives a message in
the current view. The replica adds the message to a sorted queue and calls
a processing procedure. The processing procedure is defined separately in
Listings 3 and 4.

Listing 3 handles a message from an out-of-date master, i.e., the master’s
commit number is older than the replica’s commit number. The replica first
proposes a view change to the cluster. Afterwards, it changes its gen_fsm state
to viewChange and updates the store3 with the new view number and the new
master.

Listing 4 handles messages from the current master. The prepareBuffer stores
prepare messages that arrived out of order. In particular, if the log ends at
operation number n − 1 and message n is dropped by the network, all sub-
sequent messages, n + i will be buffered. The buffered messages will not be
added to the log until message n is received.

The call to processBuffer moves messages to the log, if all previous messages have
now been received. The call to processLog commits logged messages which have
been newly committed by the master node. Lines 405–408 destructure AfterLog

and bind variables for later use. The final if statement responds to the master
unless the master has committed messages the replica has not yet received.4

3The store is called State in the code listings
4This can happen if the network drops a message whose operation number lies between the

9

(a) Progress, No Data Loss (b) No Progress, No Data Loss

Impo
ssib

le!

(c) Progress, Data Loss (d) No Progress, Data Loss

Figure 4: Some Failed Node Distributions of PhatRaid(3,1). Each circle rep-
resent a singe VR master or replica and each column is a single Phat cluster.
The red lines indicate failures.

3 Evaluation

3.1 Resilience

We distinguish between two types of failure: cessation of progress and loss
of data. In a VR cluster data loss of fully propagated, commited data only
occurs when all 2 f + 1 nodes in the cluster fail 5. In a VR cluster, progress
only ceases if f + 1 nodes are lost. In PhatRaid the conditions for cessation
of progress and loss of data are complicated by the combination of RAID and
VR.

Four arrangements of node failures in PhatRaid(3,1) are depicted in Figure 4.
There are three columns, each representing a Phatcluster of three nodes. The
red lines indicate failures. We assume failures are independent and uniformly
distributed throughout the PhatRaid group.

The top left corner, Figure 4a, depicts five of the nine nodes failing. This state
is not a failure state. The group can still make progress and no data is lost. The
two surviving clusters can reach consensus on new values and can reconstruct
the failed cluster’s data (by taking the XOR of the data on the two surviving
clusters).

The top right corner, Figure 4b, depicts four of the nine nodes failing. This
state is a failure state. The group cannot make progress; however, no data
can been lost.6 Progress is blocked because more than one cluster is unable

replica’s last commit number and the master’s last commit number.
5If more than f + 1 nodes die some “commited but not fully propogated data” can be lost
6Here and later in this paper we mean that no data which has been decided and propagated

throughout the cluster can be lost. In VR and normal Phat, by contrast, if data is decided and
propagated throughout the cluster, that data can only be lost if every node is lost.

10

to reach consensus. Since no cluster was completely destroyed, all data still
exists on at least one node.

The bottom left corner, Figure 4c, is impossible because the group cannot
make progress if data has been lost.

The bottom right corner, Figure 4d, depicts six of the nine nodes failing. This
state is also a failure state. The group cannot make progress and will lose
data. Progress is blocked because more than one cluster is unable to reach
consensus. Additionally, two complete clusters have been lost so at least half
of the data cannot be recovered.7

3.1.1 Theoretical Analysis

In general, progress ceases if more than one cluster cannot reach consensus and
data loss occurs if more than one cluster completely fails. The lower bound of
failed nodes for progress cessation in PhatRaid(C, f) is:

2 · (f + 1)

and the lower bound of failed nodes for data loss is:

2 · (2 f + 1)

The upper bound of failed nodes which still permit progress is:

(C− 1) · f + 2 f + 1

because C − 1 clusters could still make progress, e.g. if at least f + 1 nodes
are up in each cluster, and only one cluster is completely dead.

The upper bound for no data loss is:

(C− 1) · 2 f + 2 f + 1

because it is possible that C − 1 clusters have at least one node up and only
one cluster has no nodes up.

The bounds presented above cannot fully describe the failure threshold of a
PhatRaid cluster because of the interplay between VR and RAID. Instead, we
discuss the probability of group failure given n node failures.

7If only the cluster with the parity bit remains then all useable data has been lost

11

Group failure is dependent on the arrangement of failed nodes. For exam-
ple, Figure 4b depicts a situation wherein only four failures stops progress.
In contrast, Figure 4a depicts a situation wherein five failures does not stop
progress.

In a PhatRaid(3,1) group, less than one-quarter of four-failure arrangements
stop progress. The necessary condition for progress cessation is that two or
more clusters have lost at least f + 1 nodes. Only the two-in-two, four-failure
arrangement stops progress. We can count the number of such arrangements:

(
3
2

)(
3
2

)2
= 33 = 27

The first term represents choosing the two clusters of three that will fail. The
second term represents choosing which two nodes in each cluster of three
nodes will fail.

The total number of four-failure arrangements is simply:

(
9
4

)
= 126

If all nodes fail uniformly and independently, then the probability of four
nodes causing PhatRaid group failure is

27
126
≈ 0.21

When five nodes fail, they can be distributed into each cluster in three different
ways: (3,1,1), (3,2,0) and (2,2,1). The first case does not stop progress because
only one cluster fails. The later two cases stop progress because two clusters
fail. We calculate the probability of PhatRaid group failure when five nodes
fail:

12

(3,1,1)
(

3
1

)(
3
3

)(
3
1

)(
3
1

)
= 33 = 27

(3,2,0)
(

3
1

)(
2
1

)(
3
3

)(
3
2

)
= 2 · 32 = 18

(2,2,1)
(

3
1

)(
3
2

)(
3
1

)(
3
1

)
= 34 = 81

5-Failure Arrs.
(

9
5

)
= 126

Failure Prob. Pr
[
group failure |PhatRaid(3, 1), n f ailed = 5

]
=

81 + 18
126

=
99

126
≈ 0.79

A VR or PAXOS cluster of size nine is resilient to f = 4 failures. In contrast,
PhatRaid(3,1) is absolutely resilient to f = 3 failures, has high probability
of resilience to f = 4 failures, and has low probability of resilience to f = 5
failures.

The general formula for the failure probability distribution is left as an exer-
cise for the reader, but it is clear that a PhatRaid(C, f) group is absolutely re-
silient to 2(f + 1)− 1 or fewer failures. In addition, a PhatRaid(C, f) group is
likely resilient to 2(f + 1) failures and unlikely resistant to (C− 1) · f + 2 f + 1
failures.

For exactly 2(f + 1) node failures, the probability of a PhatRaid(C, f) group
failure is:

Pr
[
group failure |PhatRaid(C, f), n f ailure = 2(f + 1)

]
=

(C
2)(

2 f+1
f+1)

2

(
C·(2 f+1)
2(f+1))

For example, for a PhatRaid(6,1) we calculate:

P
[
group failure |PhatRaid(6, 1), n f ailure = 4

]
=

135
3000

≈ 0.05

13

Figure 5: Scatter Plot of Various PhatRaid(C, f) Configurations

3.2 Performance

We evaluated a prototype PhatRaid(C, f) implementation. We simulated disk
latency with sleeps. All experiments are run on a 2013-model MacBook Pro
with 8GB of RAM, and a 3GHz Intel Core i7. We found that latency scales asp

1
C−1 . This is the expected behavior for breaking a file into C− 1 chunks. We
always use one bit of party.

Figure 5 is a scatter plot of the time to store a 100 MB file in a PhatRaid

group. Each point represents a different configuration. The x-axis indicates
the number of nodes needed for that configuration. The x-axis can also be
seen as a measure of cost to create the configuration.

The slow linear growth from PhatRaid(1,1) to PhatRaid(1,14) reveals the cost
of communication in large Phat clusters. This phenomenon is also present in
the slight increase in cost from PhatRaid(C,1) to PhatRaid(C,2).

As expected PhatRaid(2, f) does not perform better than non-RAID Phat (i.e.
PhatRaid(1, f)) because the data is not sharded into pieces, and the parity bit
acts as a complete duplicate of the file.

14

4 Future Work

We would like to consider adding more than one parity bit. For some appli-
cations, the diminishing returns on latency are not worth the loss of failures.
In that case, we would do well to add more parity bits, thus allowing more
clusters to completely fail.

We would like to perform a real evaluation rather than a simulation. It seems
that as file size increases, PhatRaid becomes more appealing for lower com-
mit latency. It is not clear from our simulation, however, when the file size
is small enough for other effects (such as network latency, communications
overhead) to become more important.

5 Conclusion

We’ve presented RAID on a distributed file system which shows that sharding
files can improve latency for large files while maintaining reasonable failure
probabilities.

References

[1] Mike Burrows. The chubby lock service for loosely-coupled distributed
systems. In Proceedings of the 7th Symposium on Operating Systems Design
and Implementation, OSDI ’06, pages 335–350, Berkeley, CA, USA, 2006.
USENIX Association.

[2] David Johnson. The advantages and disadvantages
of solid state drives. http://www.champsbi.com/
the-advantages-and-disadvantages-of-solid-state-drives/, March
2014.

[3] Eddie Kohler. Harvard computer science 260r. http://read-new.seas.
harvard.edu/cs260r/2014/w/Phat, 2014.

[4] Barbara Liskov and James Cowling. Viewstamped replication revisited.
MIT Technical Report, 2012.

[5] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for re-
dundant arrays of inexpensive disks (RAID). In Proceedings of the 1988
ACM SIGMOD International Conference on Management of Data, SIGMOD
’88, pages 109–116, New York, NY, USA, 1988. ACM.

15

